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Abstract—The paper describes the details of the numerical computation of the so-called Spalding
function which occurs in the theory of heat transfer across turbulent boundary layers. The present
calculation is confined to the case when the Prandtl number Pr = 1 and when the assumption of a
counstant turbulent Prandtl number equal to unity can be made. The method used is a modification of
Schmidt’s numerical scheme for the integration of the time-dependent, one-dimensional Fourier
equation of heat conduction. In the present case, the term which plays the part of thermal diffusivity
depends on the analog of the space-co-ordinate and renders the equation singular at the origin. The
singularity is circumvented by making use of the fact that the temperature profiles must possess zero
curvature at the wall. By the use of the Reynolds analogy for turbulent boundary layers it is shown
that the preceding calculations can be used to obtain a relation between the skin-friction coefficient and
the length Reynolds number for a flat plate wetted by a turbulent boundary layer. The integration is
very simple and provides a method of judging the accuracy of the theory. This turns out to be

reasonably satisfactory.

1. STATEMENT OF PROBLEM

IN A remarkable paper on heat transfer across a
turbulent boundary layer, Spalding [1, 2] showed
that the problem is reducible to the following
partial differential equation
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The dimensionless, independent variables x* and

u™* are defined as
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where v, = (7,,/p)!/2 is the friction velocity, v is
the kinematic viscosity, # is the average
longitudinal velocity component in the turbulent
boundarylayer, and x,is the position at which the
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thermal boundary layer begins to develop. The
effective Prandtl number is given by

1 (1/Pr) + (po/p) - (1/Pry)

Pr, 1+ (/)

where Pr is the molecular Prandtl number, p is
the molecular viscosity, Pr; is the turbulent
Prandtl number, and g, is the eddy viscosity. For
Pr, = Pr = 1, we have

Pr,=1, (1d)

and in this particular case, equation (1) assumes
the simplified form
90 1 o0
ox+  erut d(ut)¥
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The dependent variable 8 represents a dimen-

sionless form of the temperature 7, in the boun-
dary layer, given by

o _ T—Two

T Ty —Tw

where T, and T are the constant wall tempera-

ture and the constant free-stream temperature,

(2a)
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respectively. Hence, for a typical heat transfer
problem, equations (1) and (2) are subject to the

boundary conditions

0 =0atx =xjorx* =0andallut > 0)
0 =0atut = wandallx > x,orx* >0 # 3)
9 =1latu* =0 andallx > xjorx* >0 |

It is noted that the reduced velocity u* rather
than the distance y (or its dimensionless form
yT = yu,/v) is used, but it is clear that u™ = oo
fory =y+ = cwand ut =0fory = y+ = 0 for
the normally employed universal velocity profile
(Coles’ [3] “law of the wall”). The quantity

€+:H’P:1¢M
Iz e

denotes the effective viscosity in a turbulent
boundary layer. It has been shown [1, 2] that the
effective viscosity e+ can be calculated from the
law of the wall by simple differentiation, since

dy+
+ = 7.
¢ T du

From the form of equations (1), (2) and (4) it is
evident that it is advantageous to invert the
usual expression u*(y*) for the law of the wall,
and to represent y* as an explicit function of u*.
An appropriate form was indicated by Spalding
[4] (see also [1, 2]) who formulated the law of the
wall by the equation

yHut) =ut + A {exp (xut) — | — xut

— 30wt — dkuty — & (k)i (5
so that
e(ut) =1+ Ax {exp (xut) — 1 — ku*
— § (et — & (kut)). (52)
The proposed values for the constants were
A4 =01108 1
k =04 = (5b)
Ax = 0-04432 |
It is convenient to introduce the abbreviation
Sy = etur (6)
which changes the form of equation (2) to
06 1 a2
(7
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The preceding equation, subject to the boundary
conditions (3), was solved approximately by
Spalding [1] by the use of the energy integral
equation, and by Murali Dharan [5], who em-
ployed an analog computer for the purpose. The
present note describes the method used to inte-
grate the equation on a digital computer (the
Brown University IBM 7070).

2. EXACT NUMERICAL SOLUTION
A glance at equation (7) reveals that it is
related to the heat conduction equation and that
it lends itself to being solved by the application of
Schmidt’s [6] finite difference scheme. Referring
to the grid shown in Fig. 1, we can write the
difference equation in the form

O(x+ -+ Ax*,ut) = 0(x*, u*) 4 ¢[0(x+, ut

+ dut) + 8(xr, ut — dut) = 200xt, u)]  (7)

where
Ax*

I G 7
The difference equation (7) permits us to calcu-
late the temperature profile at x+ 4+ 4x+ from the
profile supposed to be known at x*. For example
3 in Fig. 1 is seen to be determined from 6,,,
6,5 and 6,, by the use of the relation

023 — 013 + ¢3(012 + 9]4 - 2013) (7b)

where @4 is calculated from equation (7a) with
f (™) = f,, it being evident that /' (u*) is constant
on lines u™ = const. It is recalled that the
stability of the calculation demands that the
increments dx* and du™ must be chosen in a
manner to ensure that the condition

Ax+
"7 rwn  (duye
should be satisfied at every step. Thus, if reason-
ably small steps dut are chosen, it becomes
necessary to choose extremely small steps in Ax*
which is practicable only if a very fast digital
computer is available.

It must not be thought, however, that the
preceding scheme can be carried out in a straight-
forward manner. Since f(u*) = 0 at u* = Q,
equation (7) turns out to be singular along
u* = 0. This has the effect of rendering ¢ — oo as

< 05 (7¢)
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FiG. 1. Grid for the finite difference scheme.

u* - 0, which precludes the use of equation (7)
for small values of u+ owing to the fact that
1/f (1*) becomes very large. This makes it im-
possible to satisfy condition (7¢), regardless of
how small the steps 4x+t are made. Furthermore,
bearing in mind that the real aim of the calcula-
tion is to obtain the slope

o6

at ™ = 0, no compromise is possible, since
large errors would be introduced precisely along
that line (u* = 0) where the slope is to be
evaluated. It is this slope which determines the
rate of heat transfer, since as shown previously
[1. 2], it relates the local Stanton number to the
local skin friction coefficient, ¢;, through the
equation

St = Sp . (3c,)V2 (8a)

The so-called Spalding function Sp(x+, Pr) de-
pends on the Prandtl number, and the present
note is restricted to the calculation of Sp(x+, 1)
which will be denoted by Sp, for short. A similar
scheme can be used for Prandtl numbers dif-

C

ferent from unity, but we shall refrain from dis-
cussing this point here.

The preceding deficiency can be remedied if it
is noted that the curvature of the temperature
profiles is zero everywhere along the wall. This
is a general characteristic of all temperature
profiles along constant-temperature walls in
boundary layers. Since at the wall

o8
é;; == 0, andf: 0,
it is easy to see that

%0 20
(au"+)2 :f. ak—i‘» = ( at the wall
This means that the calculation must be started
at “infinity”, proceeding down the line x+ -+ 4x+
as far as 6,5. To the degree of approximation
used, it is then evident that

Oy = 3

since 8, == 1. By these means the condition § = 0
at yt = oo will be satisfied automatically, and in
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addition the calculation will yield § -= 1 and
*0/ou~ = 0atu- = 0.

In principle, it is possible to start the calcula-
tion at x* = 0 with # = 0 for all values of u™,
except that § = 1 at u* = 0. However, this would
put a great strain on the accuracy of the numeri-
cal scheme, and would necessitate taking very
small steps in both directions. It is, therefore,
more expedient to utilize the fact that Lighthill’s
analytic solution for laminar boundary layers
[1, 2, 7, 8] provides an excellent approximation
for small values of x*. It has been shown, then,
that

PN A )
where ¢(31, n) is the incomplete gamma function
of order § and of the similarity parameter
(yty

7= G (%2)
in which y+ must be expressed in terms of u* by
the use of equation (5). Furthermore, in that
range

Sp(x+, 1) = 0-53835 (x*)-3.  (9b)

This fact can be utilized in two ways. First, the
solution can be started at some x* > 0. In our
case the choice of the starting point at x* == 10
was made. Secondly, the accuracy of the
numerical scheme can be tested by using it to
perform a calculation below this value, i.e. in a
range where the approximations in equations (9)
and (9b) are still very good. In the present case,
the trial calculation was performed from x* = 2
to x7 = 10.

3. DETAILS OF THE SOLUTION AND RESULTS

The universal temperature profile from equa-
tion (9) was computed by matching automatically
the series expansion for y (1, 7),* namely

* See VRref.r 9.;
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to its asymptotic expansion

yG.p~7T (3) — (ACXp ~n)n’ 28

FZEHED G- mat
-1

The latter was used at n = 7-2, whereas the
former was employed for n << 7-2. Here

I'(3) = 2-6789385.

As seen from equation (9a), the calculation of
profiles for different values of x* merely requires
the scaling of » with the factor 9x* to find the
corresponding y* and hence u~.
The trial calculation was performed with the
fixed steps
dx*t =002
dut =04
for which the highest value of ¢ was
g == 0-16.
The calculation was begun at x+ == 2 with Light-
hill’s solution, equation (8), and terminated at
x* = 10, when it was compared with the analytic
solution at x* = 10. The comparison showed
that

(10)

Spy(10) = 0-24955737 for the numerical solution
Sp:(10) = 0-24984285 for the analytic solution

or a discrepancy of less than 1 in 1000. A com-
parison of the velocity profiles is shown below:

u*= Numerical Analytic
04 0-9002 0-9001
0-8 0-8004 0-8004
i2 0-7014 0-7016
1-6 0-6043 0-6047
20 0-5104 0:5110

These results were considered satisfactory, since
the discrepancies would be much less for
x* > 10 than for 2 < x* < 10 with the same
steps.

A further check was made by performing the
calculation from x* = 10 to x* = 50 with the
steps given in (10) and with steps of half that
size. The comparison is as follows:

Spy(50) = 0-14808 full steps
Spi(50) = 0-14815 halved steps
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Fi1G. 3. Temperature profiles &(u*) for x+ = 10, 102, 10?
109, 10°, 108,

and for the temperature profile:

o

Full steps  Halved steps

u =
04 0-9408 0-9407
08 0-8815 08815
12 0-8224 0-8224
I 0-7635 0-7635
20 0-7049

This was considered extremely satisfactory.
Having performed these tests, it became pos-
sible to carry out the calculation. Since it was
desired to carry the tabulation to x+ = 108, it
became necessary to increase the steps as the
calculation progressed in order to keep its
duration within reasonable limits. This did not
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impair the accuracy of the calculation, since the
temperature profile became progressively less
curved and larger steps could be tolerated. The
steps were chosen as follows:

Interval x* Ax dut Largest ¢
10 to 10° 0-02 0-4 0-16
10% to 10° 01 0-8 010
10% to 10* 03 08 0-29
10% to 10° 2:0 16 0-24
10° to 108 200 32 027

The results of the calculation are given in three
forms. Table 1 contains the values of the
Tuble Y. The Spalding function Sp(x~) for Pr = 1

S v

Xt Spyf{x)
0 @w

1 0.5384 1103 0:07151
2 04273 2 0-06443
3 0:3733 3 0:06101
4 03391 4 0-05883
5 0-3148 5 0:05725
6 0:2963 6 0-05603
7 0-2814 7 0-05504
3 0-2692 8 0-05421
9 0-2588 9 0-05350
10 0-2498 110t 0-05288
20 0-1987 2 0-04908
30 0-1742 3 004712
40 0-1589 4 0-04581
50 0-1481 5 004484
60 0-1399 6 0-04407
70 0-1335 7 0-04345
80 0:1282 8 0-04291
90 1238 9 0-04245
1< 107 01200 1o 108 0-04205
2 009929 2 0-03943
3 0-09012 3 0-03810
4 008466 4 0-03720
5 0-08092 5 0-03652
6 0-07815 6 0-03598
7 0-07598 7 0-03553
8 0-07423 8 0-03516
9 007276 9 0-03484
10° 108

007151 0-03456

Spalding function Sp; from x* = 0 to x* == 108,
and it is believed that these are accurate to three
significant figures. A logarithimic plot of this
function is given in Fig. 2, and Fig. 3 contains
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graphs of the temperature profiles 6(u*) for
selected values of x*.

4. THE COEFFICIENT OF SKIN FRICTION ON
A FLAT PLATE

The preceding calculations can be utilized for
the computation of the skin friction coefficient
on a flat plate in the presence of a turbulent
boundary layer, assumed tripped at the leading
edge. Such calculations have been performed by
several investigators for different laws of the
wall, as is well known [10], and they prove to be
very cumbersome, ¢ven on the simplest assump-
tions. The difficulties are due, in essence, to the
fact that any empirical law of the wall constitutes
an expression for the turbulent viscosity p, which
contains the skin friction. Thus the computation
of the skin friction coefficient itself leads to a
differential equation whose solution is trouble-
some, even if straightforward [11]. With the
present results to hand, this can be done ex-
peditiously if it is recalled that for Pr —= Pr, = 1
and along a flat plate the boundary layer profile
must be similar to the temperature profile. This
similarity, as is well known, can be reduced to
the statement that

St = ke, (11)

Combining the preceding statement with equa-
tion (8a), we obtain

Spi(x*) = (e (12)

which is valid irrespective of the Prandtl number,
but only for a flat plate. Since x+ depends on
¢;, equation (12) is really a differential equation
for c;. That this is so can be seen by noting that

wr= 52 et

where £ is a dummy variable of integration.
Hence

dx+ Uoo

. — (1 1/2

dx v (hep™.
Introducing this into equation (12), we find that
Uxdx dx+
v = S 9

which can be integrated at once. Introducing the
length Reynolds number,

U
Re, = e
14
it is easy to show that
2+ d§
Re, = | +——x 14
J, sno a9

where the integration involves the Spalding
function Sp,(x*) expressed in terms of x*, ¢
denoting the dummy variable of integration.
Equation (12) shows that (3c,)¥/2 is simply equal
to Spy(x*), and equation (14) yields the value
of the length Reynolds number which corres-
ponds to the coeflicient of skin friction in
question. Hence, in order to calculate the
relation c/{Re,) it is sufficient to perform one
integration, equation (14), and some very simple
additional computations whose nature is evident.

The integration indicated in equation (14) was
performed automatically together with the cal-
culations described earlier by the use of Simp-
son’s rule. The result is given in Table 2.

It must be realized that, actually, the results
quoted in Table 2 do not constitute a new, or
improved evaluation of the skin friction co-
efficient for turbulent boundary layers. Rather,
they should be regarded as a means of subjecting
Spalding’s theory of heat transfer into turbulent
boundary layers to a test of validity. This
involves two items. The first concerns Spalding’s
law of the wall, equation (5), together with the
numerical constants (5b), and is of minor
importance, since the direct comparison given
in [4] is adequate for the purpose. The second
concerns the approximation used for e*, and
requires some elaboration.

The skin friction in a turbulent boundary
layer is given by the equation

cu
= (et g

which transforms to

T

Ty dy +
instead of the expression given in equation (3a),
and used in the theory. To a first approximation,
the heat transfer problem can be solved by
putting, provisionally
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Table 2. Relation between length Reynolds number, equarion (14), and local skin-friction

coefficient, equation (12)

X (3e)t'2 = Sp c; Re, ¢y equation (15) ¢, equation (16)
108 0-0715 0-0102 11-6 » 108 0-00977 0-00988
104 0-0529 0-00559 16:8 < 10% 0-00525 0-00514
10° 0-0420 0-00354 217 x 10° 0-00328 0-00313
108 0-0346 0-00239 267 < 108 0-00224 0-00208
[oF] ) T T
Cf B
L
- —SPALDING ,
0.0 S - T
‘. /ﬁ*PRANDTL‘SCHLlCHTING . T
Ve -SCHULTZ - GRUNOW
!
0-001 ' , : “ ‘ . i Pt
104 108 0% 107
Re,

FiG. 4. Comparison between the values of the local skin-friction coefficient.

a—Spalding’s law of the wall,
b—Prandtl-Schlichting, equation (15),
c—Schultz-Grunow, equation (16).

and then iterating on the solution. The applica-
tion of this scheme to the computation of skin
friction allows us to judge whether the iteration
is required by direct comparison with experiment.
A comparison between the values given in Table
2, and the well-known formulae due to Prandtl
and Schlichting and Schultz-Grunow [12],
respectively, namely

¢; = (2 log Re, — 0-65)~%3,
(Prandtl-Schlichting) (15)

¢; = 0-370 (log Re,)2:584,

(Schultz—Grunow) (16)

is contained in the table itself and in Fig. 4.
Since the coefficients in equation (15) have been
fitted to provide agreement with experimental
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data, the present comparison is equivalent to
comparing the result of the integration with
experiment subject to the above simplification.
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Résumé—Cet article présente les détails du calcul numérique de la fonction, dite de Spalding, qui
intervient dans la théorie du transport de chaleur a travers les couches limites turbulentes. Ce calcul se
limite au cas d’'un numbre de Prandtl égal a I'unité, quand on peut faire cette hypothése. La méthode
utilisée est une modification du schéme d’intégration numérique en fonction du temps de Schmidt de
I'equation de la conduction thermique unidimensionnelle de Fourier. Dans le cas traité, le terme qui
représente la diffusivité thermique dépend de P'analogue de la coordonnée espace et entraine une
singularité a I’origine. Cette indétermination se 1éve en tenant compte du fait que les profils de tempéra-
ture doivent avoir une courbure nulle 4 la paroi. L’analogie de Reynolds pour les couches limites tur-
bulentes montre que I’on peut utiliser les calculs précédents pour établir une relation entre le coefficient
de frottement a la paroi et le nombre de Reynolds (rapporté a la longueur), dans le cas d’une plaque
plane léchée par une couche limite turbulente. L’intégration est trés simple et fournit le moyen
d’apprécier la précision de la théorie. Tout ceci est raisonablement satisfaisant.

Zusammenfassung—FEs wird die numerische Berechnung der sogenannten Spaldingfunktion, wie sie
in der Theorie des Wirmeiibergangs in turbulenten Grenzschichten auftritt, im einzelnen beschrieben.
Diese Berechnung beschrinkt sich auf den Fall Pr = 1 und die Annahme, dass eine konstante
turbulente Prandtlzahl von der Grosse 1 vorliegt. Die Rechnung wurde nach einem abgewandelten
Schema von Schmidt durchgefiihrt, das die Integration der zeitabhidngigen, eindimensionalen
Fouriergleichung der Wirmeleitung erméglicht. Im vorliegenden Fall hangt der Ausdruck, welcher
der Temperaturleitzahl entspricht, von der Analogie der Raumkoordinaten ab und liefert am Ursprung
eine singulare Gleichung. Diese Singularitit wird umgangen, wenn man beachtet, dass die Temperatur-
profile an der Wand eine Kriimmung Null aufweisen miissen. Mit Hilfe der Reynoldsanalogie fiir
turbulente Grenzschichten wird gezeigt, dass aus fritheren Berechnungen eine Beziehung zwischen
dem Koeffizienten der Oberflichenreibung und der Reynoldszahl, bezogen auf die Lange einer ebenen,
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von einer turbulenten Grenzschicht benetzten Platte, erhalten werden kann. Die Integration ist sehr
einfach und gestattet, die Genauigkeit von Spaldings Theorie abzuschidtzen. Dies erweist sich als
geniigend zufriedenstellend.

AHHOTAHUA—OIUCEIBACTCH 'WCTeHHLIT MeTo OlpeJeteHHs T Tak HasblBAeMOIl (pyHRIMIIL
Crosiiuera, NpHMeHseMoil B Teopiit TellionepeHoca mpi Typoy IeHTHOM TMOFPAHHYHOM ¢.10¢.
PeumeHne orpaHUMUBACTCH cayvaem Pr == 1 u IOPeTo.10/KeHueM, YTo TYPOyIeHTHOe UHC 10
Hpamgar.ast ne mpepsiiftaer 1. BuidicieHie 1npoBOoTILIOCh MO MOJICPHU3HMPOBAHHOMY METOY
MIMuATa, DO3ROIAIIEMY HPOBOMITL IHTCIPUPOBAHAE OTHOMePHOro vpasHeHHs (Dypbe.
B mafHoM ¢yuae BplparkeHue, COOTBETCTRYIONEE KOMPOIIMOHTY TeMIIepaTyPOUPOBOLILOCTI,
BABHCHT OT HOZOOUSA NPOCTPAHCTBCHURIX KOOPIMHAT I OHNPEe.I3eTCH W3 pellIeHiis CHHIY 15}
HOTO YPABHCHHSA. JTY CHHUYIAPHOCTh MOARHO 000ITH, ec.I NPUHATL BO BHUMAHHE, HTO TeM-
nmepaTypHee UPOPI.IIL Ha CTEHKE 1IMelOT KPIBHBHY, PaBHyl Hy1o. (O ITOMOLILI0 aHa 10rHI
PeitHoabgca 01 TV POV IOUTHLIX TONPAHIYHLIX CI10eR TTOKABAH0, UTO 13 pullee IMPoJeTalIbx
BLIUNCIHIET MOHKHEO 1101 VYUTH COOTHOIHCHITe MerR1y RODPQUIIICHTOM 110BEPXHOCTHOIO TPeuLs
i ureaoN Peinoab(cd, OTHeCCHILOro [ 1HHe TUI0CKOI TITIACTIHEL TP HATIMIE TYpOy 1enT-
HOTO 1051, Omepanits WITerpiupoBamsl 0MeHs HPOCTast I MO3BO/BICT ONeduTh TOUHOUTH
saroi CIOSLTHAN Ha CTEHRC. 3AR0H ORABLIRACTCH JOCTATOMHO TOUHLIM .



