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Abstract-The paper describes the details of the numerical computation of the so-called Spalding 
function which occurs in the theory of heat transfer across turbulent boundary layers. The present 
calculation is confined to the case when the Prandtl number Pr = 1 and when the assumption of a 
constant turbulent Prandtl number equal to unity can be made. The method used is a modification of 
Schmidt’s numerical scheme for the integration of the time-dependent, one-dimensional Fourier 
equation of heat conduction. In the present case, the term which plays the part of thermal diffusivity 
depends on the analog of the space-co-ordinate and renders the equation singular at the origin. The 
singularity is circumvented by making use of the fact that the temperature profiles must possess zero 
curvature at the wall. By the use of the Reynolds analogy for turbulent boundary layers it is shown 
that the preceding calculations can be used to obtain a relation between the skin-friction coefficient and 
the length Reynolds number for a flat plate wetted by a turbulent boundary layer. The integration is 
very simple and provides a method of judging the accuracy of the theory. This turns out to be 

reasonably satisfactory. 

1. STATEMENT OF PROBLEM 

IN A remarkable paper on heat transfer across a 
turbulent boundary layer, Spalding [ 1,2] showed 
that the problem is reducible to the following 
partial differential equation 

ae 1 a i ae 
ax+ -4 1. huf * au+ Pr, au+ (1) 

The dimensionless, independent variables xf and 
u+ are defined as 

x+ = s 5 u (4 
20 

-fy dx 

and 

Uf = d/v, (lb) 

where v* = (~,/p)~‘~ is the friction velocity, v is 
the kinematic viscosity, d is the average 
longitudinal velocity component in the turbulent 
boundary layer, and x, is the position at which the 
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thermal boundary layer begins to develop. The 
effective Prandtl. number is given by 

1 (l/W + (44 . WrJ -zz 
- Pr, 1 + 644 

(14 

where Pr is the molecular Prandtl number, ~1 is 
the molecular viscosity, Prt is the turbulent 
Prandtl number, and pt is the eddy viscosity. For 
Pr, = Pr = 1, wehave 

Pr, = 1, (ld) 

and in this particular case, equation (1) assumes 
the simplified form 

ae 1 a28 -=__ 
aX+ E+~+ a(u+y* (2) 

The dependent variable tI represents a dimen- 
sionless form of the temperature T, in the boun- 
dary layer, given by 

T- To, e=- 
T, - Tm 

(24 

where T,,, and T, are the constant wall tempera- 
ture and the constant free-stream temperature, 
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respectively. Hence, for a typical heat transfer 
problem, equations (1) and (2) are subject to the 
boundary conditions 

B=Oatx =x,,orx+ =Oandallu+ > 01 
e=Oatu+-coandallx>x,orx’>O \. (3) 
6=1atu+=O andallx>x,orx+>Oi 

It is noted that the reduced velocity u+ rather 
than the distance y (or its dimensionless form 
y+ = yc,/u) is used, but it is clear that u+ = a3 
fory-y+=coandu+=Ofory-y+=Ofor 
the normally employed universal velocity profile 
(Coles’ [3] “law of the wall”). The quantity 

E+ ,!5 = l$P1 
CL P 

denotes the effective viscosity in a turbulent 
boundary layer. It has been shown [ 1,2] that the 
effective viscosity E+ can be calculated from the 
law of the wall by simple differentiation, since 

The preceding equation. subject to the boundary 
conditions (3) was solved approximately by 
Spalding [l] by the use of the energy integral 
equation, and by Murali Dharan [5], who em- 
ployed an analog computer for the purpose. The 
present note describes the method used to inte- 
grate the equation on a digital computer (the 
Brown University IBM 7070). 

2. EXACT NUMERICAL SOLUTION 

A glance at equation (7) reveals that it is 
related to the heat conduction equation and that 
it lends itself to being solved by the application of 
Schmidt’s [6] finite difference scheme. Referring 
to the grid shown in Fig. 1, we can write the 
difference equation in the form 

e(x+ + Llx+, u’) = B(x’, u’) + p: [e(x+, UC 

+ du+) + 8(x+, u+ - h +) - 2e(x+, ~71 (7) 

where 

From the form of equations (I), (2) and (4) it is The difference equation (7) permits us to calcu- 
evident that it is advantageous to invert the late the temperature profile at x+ + dxr from the 
usual expression u+(y+) for the law of the wall, 
and to represent y+ as an explicit function of u+. 

profile supposed to be known at x+. For example 
0,, in Fig. 1 is seen to be determined from 8,,, 

An appropriate form was indicated by Spalding 8,, and Oia by the use of the relation 
141 (see also [l, 21) who formulated the law of the 
wall by the equation e,, = e,, + c63(e1z + o,, - 2e,,) (7b) 

y+(u+) = U+ + A {exp (KU’) - 1 - KU+ 
where p?3 is calculated from equation (7a) with 

- $(KU’)” -- ;(K1(+)3 - : (KU+)4j 
(5) f(u+) =f3, it being evident thatf(u+) is constant 

on lines uf = const. It is recalled that the 

so that stability of the calculation demands that the 

c+(u+) = 1 f AK {exp (KU’) - 1 - KU’ 
increments dx+ and du+ must be chosen in a 

- 3 (KU+)2 - ; (KU’)“}. 

manner to ensure that the condition 
(5a) 

The proposed values for the constants were 
AX- 

Y =f(u-) . (dUT)2 < 0.5 (7c) 

A = 0.1108 1, 
K = 0.4 

AK = 0.04432 1’ 
(5b) 

It is convenient to introduce the abbreviation 

f(u’) = E&U+ (6) 

which changes the form of equation (2) to 

ae I 828 
&J .f(u’) ++)2’ (7) 

should be satisfied at every step. Thus, if reason- 
ably small steps du+ are chosen, it becomes 
necessary to choose extremely small steps in dx + 
which is practicable only if a very fast digital 
computer is available. 

It must not be thought, however, that the 
preceding scheme can be carried out in a straight- 
forward manner. Since .f(u+) = 0 at u L = 0, 
equation (7) turns out to be singular along 
u+ = 0. This has the effect of rendering 9: + c;o as 
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FIG. 1. Grid for the finite difference scheme. 

ui- 3 0, which precludes the use of equation (7) 
for small values of of owing to the fact that 
l/f’(u+) becomes very large. This makes it im- 
possible to satisfy condition (7c), regardless of 
how small the steps dx+ are made. Furthermore, 
bearing in mind that the real aim of the calcula- 
tion is to obtain the slope 

at U+ = 0, no compromise is possible, since 
large errors would be introduced precisely along 
that line (u’ = 0) where the slope is to be 
evaluated. It is this slope which determines the 
rate of heat transfer, since as shown previously 
11, 21, it relates the local Stanton number to the 
local skin friction coefficient, cf, through the 
equation 

St = sp . (+cp”. OW 

ferent from unity, but we shall refrain from dis- 
cussing this point here. 

The preceding deficiency can be remedied if it 
is noted that the curvature of the temperature 
profiles is zero everywhere along the wall. This 
is a general characteristic of all temperature 
profiles along constant-temperature walls in 
boundary layers. Since at the wall 

ae 
-- -0,andf =O, 
ax+ 

it is easy to see that 

This means that the calculation must be started 
at “infinity”, proceeding down the line X+ + dx+ 
as far as @,,. To the degree of approximation 
used, it is then evident that 

The so-called Spalding function @(xi., Pr) de- 
pends on the Prandtl number, and the present @ If0 

22 = __._23 

note is restricted to the calculation of S&x+, 1) 
2 

which will be denoted by Sp, for short. A similar since 8,, = 1. By these means the condition 0 = 0 
scheme can be used for Prandtl numbers dif- at u + = co will be satisfied automatically, and in 

C 
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addition the calculation will yield 0 1 and 
i2e/%u~- -: 0 at u zL 0. 

In principle, it is possible to start the calcula- 
tion at x = 0 with 0 = 0 for all values of u ‘, 
except that 0 = 1 at u -I = 0. However, this would 
put a great strain on the accuracy of the numeri- 
cal scheme, and would necessitate taking very 
small steps in both directions. It is, therefore. 
more expedient to utilize the fact that Lighthill’s 
analytic solution for laminar boundary layers 
[l, 2, 7, 81 provides an excellent approximation 
for small values of XI. It has been shown, then, 
that 

ecu+, xi-) = 1 _ ‘;g! 
3 

where y($, 7) is the incomplete gamma function 
of order Q and of the similarity parameter 

in which y+ must be expressed in terms of uf by 
the use of equation (5). Furthermore, in that 
range 

Sp(x+, 1) = 0.53835 (X +)-lJ3. (9b) 

This fact can be utilized in two ways. First, the 
solution can be started at some xf > 0. In our 
case the choice of the starting point at x+ == 10 
was made. Secondly, the accuracy of the 
numerical scheme can be tested by using it to 
perform a calculation below this value, i.e. in a 
range where the approximations in equations (9) 
and (9b) are still very good. In the present case, 
the trial calculation was performed from xl = 2 
to X’ = 10. 

3. DETAILS OF THE SOLUTION AND RESULTS 

The universal temperature profile from equa- 
tion (9) was computed by matching automatically 
the series expansion for y ($, v),* namely 

Y (4,17) = 381’3 

* See Ref. 9. 

to its asymptotic expansion 

Y (i. ?I w P (k) ~--- (exp ~-- 7) 7, Z :I j I 

-f 5 (-- f) (-- cj). . (4 ~- n) $1;. 
It I 

The latter was used at 17 ;G 7.2, whereas the 
former was employed for 7 < 7.2. Here 

r(g) = 2.6789385 

As seen from equation (9a), the calculation of 
profiles for different values of x~+ merely requires 
the scaling of 17 with the factor 9x+ to find the 
corresponding y+ and hence u j. 

The trial calculation was performed with the 
fixed steps 

Ax’ = 0.02 
AU-’ = 0.4 (10) 

for which the highest value of q was 

‘f# ~-m 0.16. 

The calculation was begun at x+ -= 2 with Light- 
hilt’s solution, equation (8), and terminated at 
x+ = 10, when it was compared with the analytic 
solution at xf = 10. The comparison showed 
that 

Sy,(lO) = O-24955737 for the numerical solution 
Sp,(lO) = 0.24984285 for the analytic solution 

or a discrepancy of less than 1 in 1000. A com- 
parison of the velocity profiles is shown below: 

u’-= Numerical Analytic 
- 

0.4 0.9002 0.9001 
0.8 0.8004 0.8004 
1.2 0.7014 0.7016 
1.6 0.6043 0.6047 
2.0 0.5104 0~5110 

__ m__:__. ~~ ~~ 2 _~ ~~~~ ~_ _ 

These results were considered satisfactory, since 
the discrepancies would be much less for 
x+ > 10 than for 2 < x~& < 10 with the same 
steps. 

A further check was made by performing the 
calculation from xf = 10 to x+ = 50 with the 
steps given in (10) and with steps of half that 
size. The comparison is as follows: 

Sp,(50) = 0.14808 full steps 
Sp,(50) == 0.14815 halved steps 
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FIG. 3. Temperature profiles B(C) for x7 = IO, 102, 10” 

104 10” 106 1 I . 

and for the temperature profile: 
____ 
MA-z Full steps Halved steps 

0.4 0.9408 09407 
O-8 0.8815 0.8815 
1.2 O-8224 0.8224 
1.6 0.7635 0.7635 
2-o 0.7049 0.7049 

--xc_ .TLL ._zz r-L-_z 

1 :; 10” 0,120O I >: 10% 0.04205 
2 0.09929 2 0.03943 
3 O-09012 3 0~03810 
4 0.08466 4 0.03720 
5 0.08092 5 0.03652 
6 0.07815 6 0.03598 
7 0.07598 7 0.03553 
8 0.07423 8 0.035 I6 
9 0.07276 9 0.03484 

IO” 0.07151 106 0.03456 

This was considered extremely satisfactory. 
Having performed these tests, it became pos- 

sible to carry out the calculation. Since it was 
desired to carry the tabulation to .x4- = log, it Spalding function SP, from X- = 0 to s ’ =:= 10”. 
became necessary to increase the steps as the and it is believed that these are accurate to three 
calculation progressed in order to keep its 
duration within reasonable limits. This did not 

significant figures. A logarithimic plot of this 
function is given in Fig. 2, and Fig. 3 contains 

impair the accuracy of the calculation, since the 
temperature profile became progressively less 
curved and larger steps could be tolerated. The 
steps were chosen as follows: 

:_ ..--. :I._ _ ~~~~ 

Interval x ! Ax 1. Aw Largest 9 
----_ 

10 to 102 0.02 0.4 0.16 
lo”! to 103 0.1 0.8 0.10 
103 to 104 0.3 0.8 0.29 
104 to 105 2.0 1.6 0.24 
105 to 105 20.0 3.2 0.27 

The results of the calculation are given in three 
forms, Table 1 contains the values of the 

s i Sp,(x+) s Sp,f?r ) 
- ---_.__.____ 

0 
1 0.5Gj84 1 ,’ 10” 0.07151 
2 0.4273 2 0.06443 
3 0.3733 3 0~06101 
4 0.3391 4 0~0.5883 
5 0.3148 5 0.05725 
6 0,2963 6 0.05603 
7 0.2814 7 0.05504 
8 0.2692 8 005421 
9 0.2588 9 0.05350 

-__ 
10 0.2498 I : 103 0.05288 
20 O-1987 2 OM908 
30 0.1742 3 0.04712 
40 0.1589 4 0.0458 1 
50 0.1481 5 0.04484 
60 0.1399 6 0.04407 
70 0.1335 7 0.04345 
80 0.1282 8 0.0429 I 
90 0.1238 9 0.04245 
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graphs of the temperature profiles 19(u+) for 
selected values of x+. 

4. THE COEFFICIENT OF SKIN FRICTION ON 
A FLAT PLATE 

The preceding calculations can be utilized for 
the computation of the skin friction coefficient 
on a flat plate in the presence of a turbulent 
boundary layer, assumed tripped at the leading 
edge. Such calculations have been performed by 
several investigators for different laws of the 
wall, as is well known [IO], and they prove to be 
very cumbersome, even on the simplest assump- 
tions. The difficulties are due, in essence, to the 
fact that any empirical law of the wall constitutes 
an expression for the turbulent viscosity pCLt which 
contains the skin friction. Thus the computation 
of the skin friction coefficient itself leads to a 
differential equation whose solution is trouble- 
some, even if straightforward [ll]. With the 
present results to hand, this can be done ex- 
peditiously if it is recalled that for Pr = Pr, = 1 
and along a flat plate the boundary layer profile 
must be similar to the temperature profile. This 
similarity, as is well known, can be reduced to 
the statement that 

St = &Cf. (11) 

Combining the preceding statement with equa- 
tion (8a). we obtain 

sp,(x+) = (&)“” (12) 

which is valid irrespectice of the Prandtl number, 
but only for a flat plate. Since x+ depends on 
cf, equation (12) is really a differential equation 
for cf. That this is so can be seen by noting that 

where [ is a 
Hence 

dummy variable of integration. 

Introducing this into equation (12), 

U,dx dx+ -=---- 
V Sp,(x+) 

we find that 

(13) 

Re, = !!kf 
V 

it is easy to show that 

where the integration involves the Spalding 
function Sp,(x+) expressed in terms of xf, E 
denoting the dummy variable of integration. 
Equation (12) shows that (4~~)~‘~ is simply equal 
to Spl(x+), and equation (14) yields the value 
of the length Reynolds number which corres- 
ponds to the coefficient of skin friction in 
question. Hence, in order to calculate the 
relation c,(Re,) it is sufficient to perform one 
integration, equation (14), and some very simple 
additional computations whose nature is evident. 

The integration indicated in equation (14) was 
performed automatically together with the cal- 
culations described earlier by the use of Simp- 
son’s rule. The result is given in Table 2. 

It must be realized that, actually, the results 
quoted in Table 2 do not constitute a new, or 
improved evaluation of the skin friction co- 
efficient for turbulent boundary layers. Rather, 
they should be regarded as a means of subjecting 
Spalding’s theory of heat transfer into turbulent 
boundary layers to a test of validity. This 
involves two items. The first concerns Spalding’s 
law of the wall, equation (5), together with the 
numerical constants (5b), and is of minor 
importance, since the direct comparison given 
in [4] is adequate for the purpose. The second 
concerns the approximation used for E+, and 
requires some elaboration. 

The skin friction in a turbulent boundary 
layer is given by the equation 

,. 

=(P+llt)G 

which transforms to 

7 du+ 

-=<+dy+ 7w 

instead of the expression given in equation (3a), 
and used in the theory. To a first approximation, 
the heat transfer problem can be solved by 
putting, provisionally 

which can be integrated at once. Introducing the 
length Reynolds number, 

7 
-= 1, 
Tw 
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Table 2. Relation between length Reynolds number, equation (14), and local skin-friction 
coefirient, equation ( 12) 

x- (&c#‘2 = sp ci Re, cf equation (15) ct equation (16) 

10” 0.0715 0.0102 11.6 /’ lo” 0.00977 0.00988 
104 0.0529 0~00559 16.8 x 10” 0.00525 oQO514 
105 0@+20 oGO354 21.7 r: IO” 0.00328 0.00313 
106 0.0346 0.00239 26.7 :: IO6 0.00224 0.00208 

I-- 

l 
,-~ PSPALOING 

CHULTZ - GRUNOW 

i , .:;... 

I 

FIG. 4. Comparison between the values of the local skin-friction coefficient. 

a-Spalding’s law of the wall, 
b-Prandtl-Schlichting, equation (15), 
c-Schultz-Grunow, equation (16). 

and then iterating on the solution. The applica- cr = (2 log Re, - 0.65)-2,3, 
tion of this scheme to the computation of skin (Prandtl-Schlichting) (15) 
friction allows us to judge whether the iteration 
is required by direct comparison with experiment. 

c = o.3.,o (log Re )_-2.584 
f 

A comparison between the values given in Table 
’ (Schultz-Grunow) (16) 

2, and the well-known formulae due to Prandtl is contained in the table itself and in Fig. 4. 
and Schlichting and Schultz-Grunow [12], Since the coefficients in equation (15) have been 
respectively, namely fitted to provide agreement with experimental 
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data, the present comparison is equivalent to 
comparing the result of the integration with 
experiment subject to the above simplification. 

The preceding comparison shows that 
Spalding’s theory leads to consistently higher 
values of c~, suggesting that most probably a 
second approximation might be useful. In view 
of the very large machine time involved, this 
was not done at the present time in the con- 
viction that the approximation is adequate for 
heat transfer calculations. On the basis of auxili- 
ary manual calculations, too tedious to repeat 
here, it would seem that the omission of the 
term -(A) (KU+)~ in equation (5) will remove 
this slight discrepancy. 
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Rksumh-Cet article prtsente les details du calcul numCrique de la fonction, dite de Spalding, qui 
intervient dans la theorie du transport de chaleur a travers les couches limites turbulentes. Ce calcul se 
limite au cas d’un numbre de Prandtl egal a l’unitt, quand on peut faire cette hypothese. La methode 
utilisee est une modification du scheme dint&ration numerique en fonction du temps de Schmidt de 
l’equation de la conduction thermique unidimensionnelle de Fourier. Dans le cas traite, le terme qui 
reprbsente la diffusivite thermique depend de l’analogue de la coordonnee espace et entraine une 
singularitt a l’origine. Cette indetermination se leve en tenant compte du fait que les profils de tempera- 
ture doivent avoir une courbure nulle a la paroi. L’analogie de Reynolds pour les couches limites tur- 
bulentes montre que l’on peut utiliser les calculs precedents pour ttablir une relation entre le coefficient 
de frottement a la paroi et le nombre de Reynolds (rapport8 a la longueur), dans le cas d’une plaque 
plane lechte par une couche limite turbulente. Lint&ration est tres simple et fournit le moyen 

d’apprecier la precision de la theorie. Tout ceci est raisonablement satisfaisant. 

Zusammenfassung-Es wird die numerische Berechnung der sogenannten Spaldingfunktion, wie sie 
in der Theorie des Warmetibergangs in turbulenten Grenzschichten auftritt, im einzelnen beschrieben. 
Diese Berechnung beschrankt sich auf den Fall Pr = 1 und die Annahme, dass eine konstante 
turbulente Prandtlzahl von der Grosse 1 vorliegt. Die Rechnung wurde nach einem abgewandelten 
Schema von Schmidt durchgeftihrt, das die Integration der zeitabhlngigen, eindimensionalen 
Fouriergleichung der Warmeleitung ermoglicht. Im vorliegenden Fall hlngt der Ausdruck, welcher 
der Temperaturleitzahl entspricht, von der Analogie der Raumkoordinaten ab und liefert am Ursprung 
eine singulare Gleichung. Diese Singularitat wird umgangen, wenn man beachtet, dass die Temperatur- 
nrofile an der Wand eine Krtimmuna Null aufweisen mussen. Mit Hilfe der Reynoldsanalogie fur 
turbulente Crenzschichten wird geze& dass aus friiheren Berechnungen eine Beziehung zwischen 
dem Koeffizienten der Oberflachenreibung und der Reynoldszahl, bezogen auf die Lange einer ebenen, 
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von einer turbulenten Grenzschicht benetzten Platte, erhalten werden kann. Die Integration ist sehr 
einfach und gestattet, die Genauigkeit von Spaldings Theorie abzusch&en. Dies erweist sich als 

geniigend zufriedenstellend. 
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